Broadband Low-Noise CMOS Mixers for Wireless Communications

نویسنده

  • Fan Jiang
چکیده

In this thesis, three broadband low-noise mixing circuits which use CMOS 130 nm technology are presented. As one of the first few stages in a receiving front-end, stringent requirements are posted on mixer performance. The Gilbert cell mixers have presented excellent properties and achieved wide applications. However, the noise of a conventional active Gilbert cell mixer is high. This thesis demonstrates both passive and active mixing circuits with improved noise performance while maintaining the advantages of the Gilbert cell-based mixing core. Furthermore, wide bandwidth and variable gain are implemented, making the designed mixers multi-functional, yet with compact sizes and low power consumptions. The first circuit is a passive 2x subharmonic mixer that works from 4.5 GHz to 8.5 GHz. The subharmonic mixing core is a two-stage passive Gilbert cell driven by a quadrature LO signal. Together with a noise-cancelling transconductor and an inverter-based TIA, this subharmonic mixer possesses an excellent broadband conversion gain and a low noise figure. Measurement results show a high conversion gain of 16 dB and a low average DSB NF of 9 dB. The second design is a broadband low-noise variable gain mixer which operates between 1 and 6 GHz. The transconductor stage is implemented with noise cancellation and current bleeding techniques. Series inductive peaking is used to extend the i bandwidth. Gain variation is achieved by a current-steering IF stage. Measurements show a wide gain control range of 13 dB and a low noise performance over the entire frequency and gain range. The lowest DSB NF is 3.8 dB and the highest DSB NF is 14.2 dB. The Third design is a broadband low-noise mixer with linear-in-dB gain control scheme. Using the same transconductance stage with the second circuit, this design also works from 1 to 6 GHz. A 10 dB linear-in-dB gain control range is achieved using an R-r load network with a linear-in-dB error less than ± 0.5 dB. Low noise performance is achieved. For different frequencies and conversion gains, the lowest DSB NF is 3.8 dB and the highest DSB NF is 12 dB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study of Broadband RF Subharmonic Mixers in Submicron Technology

With the advancements in wireless technologies a lot of concern has been given for designing RF circuits and the designers are trying to introduce new topologies to achieve better outputs whether be at transmitter or receiver section of a communication system and this in-turn has led to the development of individual components of these systems. In this paper, a review of various broadband confi...

متن کامل

A Broadband Low Power CMOS LNA for 3.1–10.6 GHz UWB Receivers

A new approach for designing an ultra wideband (UWB) CMOS low noise amplifier (LNA) is presented. The aim of this design is to achieve a low noise figure, reasonable power gain and low power consumption in 3.1-10.6 GHz. Also, the figure of merit (FOM) is significantly improved at 180nm technology compared to the other state-of-the-art designs. Improved π-network and T-network are used to obt...

متن کامل

A 3-6 GHz Current Reused Noise Canceling Low Noise Amplifier for WLAN and WPAN Applications

ISSN: 2347-8578 www.ijcstjournal.org Page 315 A 3-6 Ghz Current Reuse Noise Cancelling Low Noise Amplifier For WLAN And WPAN Application Shivabhakt Mhalasakant Hanamant [1], Dr.S.D.Shirbahadurakar [2] M.E Student , Guide [2] Department of E & TC Dr. D.Y.Patil COE, Ambi Pune – India ABSTRACT A wideband low-noise amplifier (LNA), which is a key block in the design of broadband receivers for multi...

متن کامل

Recent Advances and Design Trends in Cmos Radio Frequency Integrated Circuits

Several state-of-the-art wireless receiver architectures are presented including the traditional superheterodyne, the image-reject heterodyne, the direct-conversion, and the very-low intermediate frequency (VLIF). The case studies are followed by a detailed view of receiver building blocks: lownoise amplifiers (LNA), mixers, and voltage-controlled oscillators (VCO). Two popular topologies curre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013